Stable Limits for Associated Random Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Inequalities for Associated Random Variables

In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].

متن کامل

A Survey on Simulating Stable Random Variables

In general case, Chambers et al. (1976) introduced the following algorithm for simulating any stable random variables $ X/sim(alpha, beta, gamma, delta) $ with four parameters. They use a nonlinear transformation of two independent uniform random variables for simulating an stable random variable... (to continue, click here)

متن کامل

maximal inequalities for associated random variables

in a celebrated work by shao [13] several inequalities for negatively associated random variables were proved. in this paper we obtain some maximal inequalities for associated random variables. also we establish a maximal inequality for demimartingales which generalizes and improves the result of christofides [4].

متن کامل

SOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES

In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1994

ISSN: 0091-1798

DOI: 10.1214/aop/1176988845